Home ProductsNano-positioning

Multilayer Piezo Rectangular Actuators/ HMJ200 series( piezo stack actuators in an extensive array of dimensions, stroke

Multilayer Piezo Rectangular Actuators/ HMJ200 series( piezo stack actuators in an extensive array of dimensions, stroke

    • Multilayer Piezo Rectangular Actuators/ HMJ200 series( piezo stack actuators in an extensive array of dimensions, stroke
    • Multilayer Piezo Rectangular Actuators/ HMJ200 series( piezo stack actuators in an extensive array of dimensions, stroke
    • Multilayer Piezo Rectangular Actuators/ HMJ200 series( piezo stack actuators in an extensive array of dimensions, stroke
  • Multilayer Piezo Rectangular Actuators/ HMJ200 series( piezo stack actuators in an extensive array of dimensions, stroke

    Product Details:

    Place of Origin: CN
    Brand Name: HM
    Certification: CE, RoHS, SGS ISO9001:2008, ISO14001:2015
    Model Number: ALL

    Payment & Shipping Terms:

    Minimum Order Quantity: 5
    Price: $500~$5000
    Packaging Details: In standard export packing as per manufacturer
    Delivery Time: 30 WORK DAYS
    Payment Terms: MoneyGram PAYPLE
    Supply Ability: 10000PCS/MONTH
    Contact Now
    Detailed Product Description
    High Loads: Up To 10,000 N Large Displacements: Up To 0.15-0.20% Of Piezo Stack Height
    Size: Small Size Bare Piezo Stacks / Encased Piezo Stacks: Bare Piezo Stacks / Encased Piezo Stacks
    Mechanical Pre-stress / No Pre-stress: Mechanical Pre-stress / No Pre-stress Co-fired (150 V Maximum): Co-fired (150 V Maximum)
    Discrete Stack (150 V / 500 V / 1000 V Maximum): Discrete Stack (150 V / 500 V / 1000 V Maximum) Basic (planar Face) And Spherical Endpieces Available: Basic (planar Face) And Spherical Endpieces Available
    High Dynamic Drives: High Dynamic Drives High Volume Production Capability: High Volume Production Capability
    Custom Design And Engineering Services Available: Custom Design And Engineering Services Available Amplifiers, Electronic Switches, Other Auxiliary Apparatus Available: Amplifiers, Electronic Switches, Other Auxiliary Apparatus Available
    Competitive Pricing: Competitive Pricing Fast Delivery: Fast Delivery

    Basics of Stack Actuators

    Piezo materials are materials that will generate an electric charge when they are deformed, or conversely, they will deform when electrically charged. The latter is the inverse piezoelectric response and the response responsible for actuation.

    An actuator is essentially a motor, or a generator of motion, usually linear and limited in range. A piezo actuator will generate a linear displacement when an electric field is applied, and this displacement is also capable of applying a force, and therefore the actuator is capable of doing work. The amount of force that can be applied depends on the cross sectional area of the actuator.

    The amount of movement that a piezo device can yield is equal to the amount of voltage applied times the d33 or the piezo electric coefficient. This piezoelectric coefficient, d33, is a figure of merit for the piezo material relating to the efficiency of the material in transferring the electrical energy to mechanical energy. Please note that this movement does not depend on the dimensions of the piezo element. Therefore, when one stacks piezo elements together, there is a multiplying effect on the amount of movement that is achieved. However, the amount of voltage that can be applied will depend on the material and the thickness of each element. A stack of 2 piezo elements will have twice the movement at the same applied voltage as a single piezo element, and a stack of 3 piezo elements will exhibit 3 times the movement as a single element with the same applied voltage, etc. This is the basis for multilayer actuators.

    Multilayer actuators are essentially many stacked layers of piezo material acting in concert. There are low voltage actuators, usually operating at up to 200 volts, and high voltage actuators operating at up to 1000 volts.

    Low voltage actuators are co-fired multilayer actuators. These have very thin ceramic layers that are made by casting a ceramic / organic slurry to form a tape, dried, electroded with a thin precious metal electrode, usually a silver palladium electrode, the electrode tape is stacked, laminated, and fired to a dense ceramic / electrode package. The fired package is cut to size exposing the electrodes and the electrical connections are made. The stack is poled by applying a DC field to activate the piezo material and a protective insulating coating is applied.

    High voltage actuators are constructed with discrete sintered, poled ceramic disks, rings or plates with thin metal leaf electrodes interlaced between the ceramics. The device is bonded together with a high quality adhesive. These stack actuators are often enclosed in metal casing with an appropriate pre stress applied. Other options for these actuators can be casings specially designed to manage the heat generated during operation, or include the possibility of position sensing for the piezoelectric stack actuator.

    Piezo actuator movements will be on the order of a hundred micro meters supporting a load of 7 kN/cm2. Therefore one must be aware of the advantages of piezo actuators to be sure that they are the correct choice for the application compared to conventional motors.

    The advantages of piezo motors over conventional motors are: Fast response without delay, Very high acceleration rates, Very high power generation, Compact design, High mechanical power density, Consumes power only when motion is generated, Operates in vacuum and at Cryogenic conditions, have no rotating parts, and are unaffected by magnetic fields.

    Care must be taken when mounting piezo actuators that all resulting applied stress on the actuator is axial and is a purely compressive stress. Piezo actuators can be designed with various end pieces to ensure appropriate loading.

    Applications for piezo actuators include fiber modulation for communications, precise positioning devices, proportioning valves, electrical switches, micro pumps, ink jet printers, and anti-vibration devices.

    HM carries a variety of piezo actuator power supplies / amplifiers to operate our piezo actuators in your electromechanical system.

     

     

    Features

     Compact size
     Accurate positioning in nm
     High-speed response in ms
     Large blocking force
     High energy conversion efficiency, low power consumption and no electromagnetic noise
     Easy to be controlled by voltage


    Scope of applications

     Precision mechanics and mechanical engineering
     Life sciences,Medicine and Biology
     Pneumatic&Hydraulic valves
     Nano positioning/high-speed switching
     Active and Adaptive optics

     

    Part numbering

     

    Multilayer Piezo Rectangular Actuators/ HMJ200 series( piezo stack actuators in an extensive array of dimensions, stroke

     

    Dimensions


    Multilayer Piezo Rectangular Actuators/ HMJ200 series( piezo stack actuators in an extensive array of dimensions, stroke

    Specification

     

     

     

    Model
    Dimensions Nominal displacement Blocking force Stiffness Electrical capacitance Resonance Frequency
    OD/ID/H [µm@250V] [N@250V] [N/µm] [µF] [kHz]
    [mm] ±10%     ±20% ±20%
    HMH2501203201 Φ12/Φ3/20 20 3500 175 4.6 75
    HMH2502515301 Φ25/Φ15/30 30 9000 300 13.5 50

    * Customize on request.

     

    Key Technical Index Unit Value
    Relative dielectric constant εr3T - 3500±20%
    Electromechanical coupling factor Kp - 70%
    Longitudinal piezoelectric strain coefficient d33 10-12C/N ≥650
    Piezoelectric voltage constant g33 10-3Vm/N 17
    Elastic flexible coefficient S11E 10-12m2/N 14.3
    Elastic flexible coefficient S33E 10-12m2/N 18.5
    Dielectric loss tgδ 10-3 ≤1.5
    M quality factor Qm - 45
    Curie temperature TC 240
    Density ρ g/cm3 7.9

     

     

     

    Contact Details
    hanse-john electronic Co.,Ltd.

    Contact Person: Mr. liuhongmao

    Tel: 86-0510-13912395130

    Fax: 86-510-88213035

    Send your inquiry directly to us (0 / 3000)